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Abstract

We discuss the application of the reduced basis method for the simulation and con-
trol of unsteady viscous flows governed by the incompressible Navier-Stokes equations.
We describe how to use this method in terms of the construction of a lower-order
compensator design. QOur approach includes a construction method of the optimal
state feedback law for finite dimensional nonlinear regulator problems. The method is
applied to construct a feedback law for the reduced order control model of the Navier-
Stokes equations, and then we apply our feedback law to the original control system.
Our method is demonstrated on a control problem formulated in a channel flow using
a boundary velocity control. We also show how these ideas can be extended to control
problems governed by partial differential equations. Numerical results are reported for
the open and closed loop controls, and a compensator design is proposed to complete
the closed loop dynamics.

Keywords: flow control, compensator design, Navier-Stokes equations, reduced basis
method, finite element method.

1 Introduction

In this paper we discuss the application of a reduced order model for the simulation
and control of unsteady viscous flows. The reduced order model is developed using
the reduced basis method with Lagrange interpolation. We will use the reduced ba-
sis method for the construction of a lower order compensator design. Our discussion
will focus on the active control of the incompressible Navier-Stokes equations, but the
procedure can be applied to other control problems governed by partial differential
equations.

Active control of partial differential equations in real time requires extensive com-
putational time and resources. Using standard methods such as finite differences or
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finite elements often result in problems that are too large to solve in a reasonable time.
We develop a reduced order model which overcomes this difficulty. The reduced ba-
sis method uses basis functions which are generated from the equations being solved.
Since the basis functions are problem dependent, the dynamics of the original system
can effectively be captured while using a small number of basis functions. This results
in a dense, low order system which can be solved efficiently. This is in contrast to
finite element methods, which use piecewise polynomials as basis functions, resulting
in a large, sparse system of equations.

In §2 we will discuss the simulation of the incompressible Navier-Stokes equations
using the finite element method. In §3 we describe the reduced basis method. This
includes the selection of the reduced basis subspace and the construction of the re-
duced order model for the time dependent Navier-Stokes equations. We will compare
two techniques for the selection of basis functions, and compare the reduced order
solutions with the full solution computed in §2. In §4 we discuss the reduced order
optimal control problem and formulate the solution method for the nonlinear regulator
problem. In §5 we describe the construction of the feedback synthesis based on the
reduced order model, and we also develop a compensator design based on the reduced
order control system and the constructed feedback synthesis.

2 Simulation of the Navier-Stokes Equations

The Navier-Stokes equations which govern viscous incompressible flow are

Ju 1 .
i EAu—}—u-Vu—l—Vp = f inQx(0,7] (2.1)
Viu = 0 inQ2x(0,7] (2.2)
u = uw onl x][0,7] (2.3)
u(x,0) = ug(x) inQ (2.4)

where u(x, 1) is the velocity, p(x,t) is the pressure, f(x,?) is the body force, Re is the
Reynolds number, u; is the boundary velocity, ug(x) is the initial velocity, and Q is a
bounded region in R? with boundary T.

We will cast (2.1)-(2.4) in a variational form and use a mixed finite element approx-
imation. First, we will introduce some standard notations. We denote by L*(Q) the
collection of square integrable functions defined on 2, and we define the inner product

on L?(Q) by
(6,6)= [ dvda
Let

{ue L}Q): g—" € 12(Q), i=1,2}
T

H&(Q) = {UGHI(Q):U|3QIO}

H'(9)

The vector-valued counterparts of these spaces are denoted by bold face symbols, for
example H'(Q) = H'(Q) x H'(Q).

The variational form of (2.1)-(2.4) is obtained by taking the L%-inner product of
Equation (2.1) with any function v € H)(Q), and the L2-inner product of Equation



(2.2) with any function ¢ € L?(Q). Applying the divergence theorem we arrive at the
following variational form:

(ug, v) + %a(u,v) +b(u,u,v)—c(v,p) = (f,v) for all v € H)(Q) (2.5)

c(u,q) =0 forall g € L*(Q) (2.6)

where (-,-) denotes the L%-inner product and we define the standard bilinear and
trilinear forms as follows:

a(u,v) = / Vu-Vvdz forall u,v e H(Q)
Q

c(u,q) /Q(V -u)gdz forall u € Hl(Q)7 = LQ(Q)

b(u,v,w) = %/((u-VV)-W—(u-VW)-V)d:E for all u,v,w € H'(Q)
Q

where we use the skew-symmetric form of the trilinear form introduced in [1] so that
the discretized equations preserve the skew symmetry property of the Navier-Stokes
equations. We also have the following properties of these linear forms. All of the forms
a(-,-), b(+,-,-), and ¢(-,-) are continuous. The bilinear form a(-, -) satisfies the following
coercive property:

a(u,u) > Cylju||i for all u € H{(Q).

The bilinear form ¢(-,-) satisfies the following inf-sup condition, as explained in [2]:
there exists v > 0 such that

inf  sup (M) > 7. (2.7)

€L2(@) yemi(a) \VIlllallo

We will use the mixed finite element method to approximate Equations (2.5)-(2.6).
That is, we seek solutions u* € V* and p" € §" such that

(ul,vh) + %a(uh,vh) + b(u, ut vh) —e(vh p") = (£f,v") forallvi e VI (2.8)

c(uh,qh) =0 forall ¢" € §" (2.9)

where V% c HY(Q) and §* C L%(Q) are approximating finite dimensional subspaces.
We use piecewise quadratic and piecewise linear basis functions for the velocity and
pressure, respectively. This selection, referred to as the Taylor-Hood element pair, is
known to satisfy the condition (2.7).

The resulting approximating system can be written as the following system of equa-
tions:

Qu+ Hu+ B(u,u) + (ﬁ;:rﬁ) =f (2.10)
(B By) (Zl> =0 (2.11)

where @) is the mass matrix, H is the stiffness matrix, (By Bz) are the continuity
matrices, and B(u,u) is the quadratic form that approximates the convective term. To



solve this system, we will project Equation (2.10) onto the divergence free subspace,
as described in [3], by using the following projection preconditioner

P = Pr2(=A)"' Py,

where

BT _

Ppo=1- (Blf) (B1BY + ByB])"'(By B)
2

is the L2-projection onto the divergence free space. Applying the preconditioner to

(2.10)-(2.11) we have the following nonlinear system of equations

PQu+ PHu+ PB(u,u) = Pf. (2.12)
We used the Implicit Midpoint rule to integrate Equation (2.12) in time, ie
ukts k

2 —U

TR + PHu**z + PB(uMt2, uFt2) = P, (2.13)

PQ

uF = ouhtE — gk, (2.14)

We solved (2.13)-(2.14) using Newton’s method; the Newton step here is carried out
using the iterative method GMRES. In Figure 1, we see the solution to these equations
on the forward facing channel flow. The height of the inflow boundary is 3, and that
of the outflow boundary is 2. For boundary conditions, we assume a parabolic velocity
profile at the inflow and outflow, and zero boundary conditions on all other walls. The
inflow condition is u(y) = $y(3—y) and the outflow condition is u(y) = 2(3—y)(y—1).
The equations (2.13)-(2.14) were solved using At = 0.1 to a final time of 7" = 40. Since

3.5

Figure 1: Time Dependent Navier-Stokes Equations at 7' = 40

the initial condition must also satisfy the incompressibility condition (2.9), we used
the solution to the stationary Stokes equations as the initial condition. The Stokes
equations are the linear equations of the form

u; — Au+ Vp =0,



V-u=0.

Typically, a large number of unknowns is required to capture the complex flow
patterns at high Reynolds numbers. For our computations, over 5000 unknowns were
used. Using an Ultra Sun Sparc Station, the above computation required approximately
20 hours of computational time. We would like to develop a method to reduce the order
of the system, thus requiring less computational time to solve, while still capturing the
dynamics of the original system. We will describe this reduced order method in the
next section.

3 The Reduced Basis Method

In this section we will present a reduced order method based on the reduced basis
method. We would like this reduced order method to have the following characteristics:

1. Require a small number of basis functions.
2. Be inexpensive to solve.
3. Capture the dynamics of the original system.

The reduced basis method was first proposed in [4, 5] for structural analysis, and it
has been used for structural problems in [6, 7], and for incompressible flow problems
in [8, 9]. We will discuss the choice of reduced basis subspace and the construction
of the reduced order equation. We will then develop a reduced order model for the
incompressible Navier-Stokes equations, and show that it can effectively be used to
capture unsteady viscous flows.

Consider the equation

E(u,\)=0 forue X, AeA (3.1)

where A represents a physical parameter, such as Reynolds number, and u is a solu-
tion in a Hilbert space X. We will construct the reduced basis subspace X® C X by
interpolation of the solution function u(\) of Equation (3.1) using one of the following
three choices.

1. The Taylor Subspace In this case the reduced basis functions are linear combi-
nations of Taylor basis functions generated by computing the Taylor expansion of u(\)
at some reference value of A, say A*. Let ug be the solution at the parameter A\*, and
assume it has M derivatives. The reduced basis subspace is

du .
XF= span{u; : u; = WL\:A*, j=0,...,M}
The equations for % can be obtained by successive differentiation of Equation (3.1)

with respect to the parameter A. For example, uq = g—; satisfies the linear equation

Eu(”Oy /\*)ul = —EA(U(), )\*)

Note that each subsequent u;, 7 =1,..., M can be computed by solving a linear sys-
tem with the same linear operator Fy(ug,A*). This choice has been proven effective
for steady state fluid flow calculations, see [8]. However, one disadvantage is that if
the parameter A moves away from the reference parameter A*, then the basis functions



may have to be updated.

2. The Lagrange Subspace In this case the reduced basis functions are linear com-
binations of basis functions generated by solving the nonlinear system (3.1) at various
parameter values A;. The reduced basis subspace is

xF = span{u; 1 u; = u(/\j), j=1,...,M}

An advantage with this choice is that the subspace can be updated by adding more
basis functions, rather than updating the whole subspace.

3. The Hermite Subspace In this case the reduced basis functions are computed by
solving the nonlinear system (3.1) at various parameter values M, and computing the
first derivatives at various parameter values. The reduced basis subspace is

XF= span{u; = u(A;) and %L\:/\], j=1,.. .,IVA[}

We can think of this choice as a hybrid of the Lagrange and Taylor approaches.
Let {¢;} be a basis for the reduced basis subspace X C X, and let m = dim(XF).
If we let the reduced order solution be u = "™ a;¢;, then we obtain the reduced or-
der problem by projecting Equation (3.1) onto the reduced basis space by the Galerkin
approximation
ER(uP ) = (BE(uP ), ¢ xeyx, i=1,...,m.

For the evolution equation
d
Eu(t) + E(u(t),\) =10 (3.2)

we can generate the basis functions using solutions to the stationary problem as de-
scribed previously, or we can use solutions to (3.2) at different time instances. The
reduced order solution is uf(t) = 37, a;(t);, and the reduced order problem is

d
<%uR(t) + E(uR(t), Abiyxsxx =0,1=1,...,m

We performed a comparison of the Lagrange and Hermite basis functions for the sta-
tionary Navier-Stokes equations. Using the approach described above, ie computing
solutions at various Reynolds numbers, we were able to obtain a good approximation
using 3 to 5 basis functions. The performance of the Lagrange versus the Hermite
basis functions is comparable. Since the Lagrange basis functions require less time to
compute and are also more adaptable, we will use Lagrange basis functions for the rest
of our computations.

3.1 Reduced Order Model for Viscous Flows

In this section we will develop a reduced order model for the unsteady incompressible
Navier-Stokes equations. The reduced basis functions will be generated using two
different techniques:

1. Solutions to the time dependent Navier-Stokes equations at various time in-
stances,

2. Solutions to the stationary Navier-Stokes equations with varying boundary ve-
locity control force.



In both cases we will use Lagrange interpolation to generate the reduced basis subspace.
The former method is the more standard approach and has been proven effective in [10].
We use the latter approach because we feel it leads more naturally to the reduced order
control problem. Through a comparison we will show that both techniques of basis
generation produce a reduced order model which accurately captures the dynamics of
the time dependent Navier-Stokes equations.

We will first illustrate the generation of the reduced basis functions from the time
dependent Navier-Stokes equations. Define the reduced basis subspace as

VR = span{u; : u; = u(t;), i =0,...,m}

where u”(¢;) is the finite element approximation at time t; to

(ul,v") + ia(uh,vh) + b(u", u", vh) —e(v", p") = (f,v") forallv' e V]
c(uh,qh) = 0 forall ¢" e 5"
(u",vMr = (u,v"r forall v e V)
(u(z,0),v") = (ug(z),v") forall v € Vi

Define the reduced order solution as

uf(t) = g0+ Y ai(t)es,
=1
where ¢g = u?m is the solution at the final time. The basis functions {¢;}/~, are
defined as
¢; = uh(ti) — uh(ti_l), t=1,...,m.

Thus, ¢o has boundary conditions as the inflow/outflow conditions, {¢;}7, € V& =
VN V] have homogeneous boundary conditions, and are used as test functions.

We will now illustrate the derivation of the reduced basis functions from the sta-
tionary Navier-Stokes equations. Define the reduced basis subspace as

VR = span{u; = v : u"

r.=ur,i=1,...,m}

where the finite element approximation u” satisfies

1
R—a(uh,vh) +b(u”, ut, v e(v,p") = (f,v") forall vi e Vi
e
c(uh,qh) = 0 forall¢"e 5"
(u",vMr = (w,v"r forall v e V)
11|rC = T
where I', is the control portion of the boundary, v;, + = 1...., m are the boundary

control velocities, and T is a unit tangential vector. Define the reduced order solution
as

uP(t) = ¢ + fj a;(1)d;

where ¢g = ug is the solution with zero boundary control velocity, and the basis
functions {¢;}7, are defined as

¢; = u,, —a;u; +bug, 2=1,...,m.



The constants a; and b; are chosen to force homogeneous boundary conditions.

Once we have the reduced basis subspace VF, we can write the reduced order
equation for the time dependent Navier-Stokes equations (2.1)-(2.4) as: Find u®i(t) €
V such that

1
(uﬁa VR) + Ea(

(u(z,0),vF) = (up(z),vF) for all viie VI (3.4)

Note that the divergence free term does not appear since the reduced order basis
functions satisfy the incompressibility condition (2.9). Substituting u® = ¢g+ "7, ¢;
into Equation (3.3)-(3.4) with v = ¢;, j = 1,..., m, we obtain the following system
for a;(t), i1 =1,...,m

(i_n: ( )¢27¢J) ( ¢0 + Zaz ¢2 V¢])

u?® v 4 bl uf, v = (f,v) forall v e VI (3.3)

b(gbO‘}'Eaz ¢27¢0+Za2 ¢27¢]):(f7¢j)7j:17"'7m

m

( )(qb“qb]) (110,%) 7=1...,m
=1
We can write this system as the following system of nonlinear ordinary differential
equations

Mé(t) + AE(t) + col E(1) TP, = F(t) (3.5)
Ma(0) = ag (3.6)
where a = col(ay, ..., an) € R™, £ = (1 a)T € R™*!, and we define the mass

matrix M = (M;;) € R the stiffness matrix A = (A;;) € R™* ") the forcing
term F = (F;) € R™, and the initial condition U° = (U?) € R™ as follows:

Mi; (biybi)s 1,5 =1,...,m,
Ai; = (V¢im1, V1), i=2,...om+1,7=1,...,m+1,
Fi(t) = (F(), i), i1, m,
U = (ag,¢),i=1,...,m.

The matrices P; € R m+1)x(m+1) are defined by
(Pi)jk = (dj—1 - Vp_1,¢:), i=1,...,m, j,k=1,....m+ 1.
If we define the matrix A as (TN€); = TP, i = 1,...,m, then we can write
Equation (3.5)-(3.6) as
Ma(t) + AL(t) + (TN = F(1)
Ma(0) = U°

This is a dense, low-order system of nonlinear ordinary differential equations which we
solved using the Implicit Midpoint rule

E+L ok
/\/laAQti/Qa + AT 4 ()TN T = M,



1
aFtl = 20Ft3 — ak,
Ma® =U°.

We solved this quadratic system using Newton’s method. Since the order of the system
is small, the Newton step can be solved efficiently using a direct solver.

We have shown that a reduced order model can be developed which is inexpensive
to solve. In the next section we will show that this model can accurately capture the
original dynamics using a small number of basis functions.

3.2 Computations of the Reduced Order Model

We will demonstrate the performance of the reduced order model for the time depen-
dent Navier-Stokes equations on the forward facing channel flow problem. As described
in the previous section, we will compare two techniques for the selection of basis func-

tions. The basis functions generated from the time dependent solution are shown in
Table 1.

Basis Function U | u; | ug | usz | uy

Number of time steps || 100 | 200 | 300 | 400 | 500

Table 1: Basis Functions Generated from the Time Dependent Navier-Stokes Equations

The basis functions are defined as follows:

¢o = uy

$1 = u;— 1
¢ = uy—u
¢3 = uz-—uy
¢4 = uy— us.

The basis functions generated from the stationary solution with corresponding bound-
ary velocity are shown in Table 2. The control region is taken to be the portion of the
lower boundary from z = 1 to z = 5.

Basis Function Ug| uy | uy | uz | ug | us

Boundary velocity || 0 | 0.05[0.1]0.15]0.2|0.25

Table 2: Basis Functions Generated from the Stationary Navier-Stokes Equations

The basis functions are defined as

$o = g

$1 = us—5Su; +4ug

¢ = us-— %112 + %uo
¢3 = us-— %113 + %110
¢s = us— %u4 + iuo-



In Figure 2 we see the full solution at T" = 25. The solution was generated from the
mixed finite element approximation described in Section 2. In Figure 3 we see the
reduced order solution using basis functions generated from the stationary solution. In
Figure 4 we see the reduced order solution using basis functions generated from the
time dependent solution. Since we used the solution to the Stokes equations as an
initial condition for the full solution, we will use the projection of the Stokes solution
onto the reduced basis space as an initial condition for the reduced order model.

Comparing Figures 3 and 4 with Figure 2, we see that the reduced order models do
accurately capture the dynamics of the full solution.

Figure 2: Full Solution at T=25

Figure 3: Reduced Order Solution with Stationary Basis Functions at T=25

For a closer examination, in Figure 5 we see the velocity profiles of the reduced order
models and the full solution at various time instances. The velocity profiles are chosen
at z = 1,2,3,4,5. These were chosen because this is where the recirculation is taking
place, and it is this property which we want to capture with the reduced order models.

10



3.5

Figure 4: Reduced Order Solution with Time Dependent Basis Functions at T=25

4 Reduced Order Control Problem

In this section we will develop a reduced order model for the control of the unsteady
Navier-Stokes equations. From this reduced order system we will compute the neces-
sary optimality conditions and outline a method of solution which can also be used
to compute the open loop control for control problems governed by partial differential
equations.

We begin with the development of the optimal control problem for viscous incom-
pressible flows with boundary velocity control. Let us formulate the optimal control
problem as

T p
Minimize J(u,0(t)) = / (F(w)+ Sfo(t)2)dr
0
subject to

(ug,v) + a(w,v)+ b(u,u,v) —c(v,p) = (f,v) forallv e H)Q)
c ) 0 forallge L*(Q)

u, onl

u(t)r on I,

(u(z,0),v) = (ug(z),v) forallve H}(Q)

v,
u

( 9

RS

where f is a fixed body force, u, is a fixed boundary value on the boundary I'. The
function u(t) is the control velocity defined on the control portion of the boundary I'.,
and T is a unit tangential vector. In the cost functional, 3 is the penalty term and (%)
is the control force with the relation £u(t) = v(t). Note that by including v(t) in the
cost functional, we are minimizing the rate of change of the control velocity u(¢). The
problem we will be studying is the minimization of vorticity in some subregion of the

forward facing channel. We will use

F(0) = Fyonticity = /Q |V x ul da (4.7)
where Q* C 2 is the subregion where we wish to minimize vorticity. We will also use
F(u) = ftracking = /Q* lu — ud|2d$ (4.8)

11
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Figure 5: Velocity Profiles for Forward Facing Channel Flow

where uy is the solution to the Stokes equations. Since the Stokes equations do not
have a recirculation region, we are minimizing vorticity by tracking to this solution.

We will now present the reduced order optimal control problem. The purpose of
designing a reduced order model is so that the control can be computed in an efficient
way, thus obtaining a suboptimal control law for the full system. Define the reduced
order solution as

2R(1) = do+ D ai(t)pi + Y wi(1)bigm
i=1 7=1

where ¢y corresponds to the stationary boundary force, ie the inflow /outflow condi-
tions, {¢;}7, are test functions with homogeneous boundary conditions, and {¢; ;”:ZL_H
are trial functions with corresponding boundary control force. The number of trial
functions n will be determined by the number of control inputs in the system. The
number of test functions m should be chosen large enough that they can accurately
capture the dynamics of the system, yet small enough so that the reduced order system
does not become ill-posed. For the forward facing channel flow problem with tangen-
tial boundary velocity control, we have one trial function corresponding to the control

input, and we obtained good results using 2 to 4 test functions.

12



We can write the reduced order controlled unsteady Navier-Stokes equations as
Ma(t) + Az(t) + 2(t)TNa(t) + bo(t) = 0
u(t) = v(t).

We can now write the reduced order control problem as

T

Minimize J(z,v) :/ (%JETQ‘JU + §|‘U(t)|2)d‘t
0

subject to
Ma(t) + Az(t) + ()T Na(t) 4+ bo(t) = 0
a(t) = o),
where Q;; = (V X ¢;,V x ¢;), t,7 = 1,...,m. Note that we can write this control
problem in a general form as
T
Minimize J(z(1),v(t)) = / (I(z(t))+ h(v(2)))dt (4.9)
0
subject to
B) = fa(t) + Bo(t) (4.10)
z(0) = =z (4.11)

where z(t) = [a(t) u(t)]T € R™ is the state and v(#) is the control. If we let h(v(t)) =
§|v(t)|2, then we can write the necessary conditions of optimality as

&(t) = f(z(t))+ Bv(t) a.e. in(0,7), z(0) = zo,
=p(1) = fo(z(D)Tp(t) + L(2(1)) ae. in (0,T), p(T) =0,
v(t) = —%BTp(t) a.e. in (0,7,

which is the well known Pontryagin maximum principle, and p(t) € L%(0,T) is the
Lagrange multiplier. Thus the state-costate pair (z(t),p(t)) satisfies the two-point
boundary value (TPBV) problem

i(t) = f(fc(t))—%BBTp(t) (4.12)
“p(t) = Fola()TP(E) + L(2(1)) (4.13)

with z(0) = z¢ and p(T) = 0, and the optimal control »(t) for (4.9)-(4.11) is given by

o(t) = %BTp(t).

In the next section we will develop a solution procedure for the TPBV problem (4.12)-
(4.13), and then present numerical results for the reduced order controlled Navier-
Stokes equations.

13



4.1 Solution Procedure for Reduced Order Control Prob-
lem

In this section we will describe a general solution procedure to solve the TPBV problem
(4.12)-(4.13). This method is described in [10] and is summarized here since the results
are used directly in the design of the feedback synthesis.

We will discretize (4.9)-(4.11) using the Crank-Nicholson method for the dynamical
constraint (4.10), and the trapezoidal rule for the cost functional (4.9), instead of
directly discretizing the TPBV problem (4.12)-(4.13). That is,

N

Minimize 7V =3 (%(l(xk_l) F1(")) + h(o)) At (4.14)
k=1
subject to
gk —ak 1 1 k k-1 k
= L+ ) 4 Bt k=1, N (4.15)

At 2

where NAt = T and 2° = xo. The necessary optimality conditions for (4.14)-(4.15)
are

k k—1 1

T = UG ) - BB (4.16)
prtl — pk 1 BNT, k| & k
———=— = LE) P+ LY (4.17)

for k = 1,...,N and 2° = 29, pV*! = 0, and the optimal control to (4.14)-(4.15) is
given by

As a consequence, (4.16)-(4.17) is an approximation to the TPBV problem (4.12)-
(4.13). System (4.16)-(4.17) is a sparse system of nonlinear equations in z*, p*, k =
1,..., N, which can be solved using Newton’s method:

Y+ = Yo — [F'(y)] 7 Flye)

where y = col(z',...,2N, p',...,p"), the function F(y) = F(z',..., 2N, p',....p")

is given by
sk k=1

At

= (R + () + BB
F(y) - k+1_ kK

p Atp + %f$(mk)T(pk+pk+1)+lz(ack)

and the Jacobian has the following matrix structure

, (A C
F_<DAT7

where A is block lower bi-diagonal, and €' and D are block diagonal with blocksize m.
The diagonal and subdiagonal blocks of A are given by

B I 1 & B I 1 &
Ay = 7 + 2fz($ ) and Apgyip = Az + QfI(JE ).
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The diagonal block C' is the constant block

Cri =

and the diagonal block D is given by

1
Dy = §fm(96k)T(pk + M)+ L (ah).

If we reorder the vector y = col(z?, ..

B

N 1
LI, Pp, ..

1
—BBT,

.,pN) toy = col(x!,pt, 2%, p?, ..

'7$N7pN)

then the Jacobian is a block tridiagonal matrix with blocksize 2m. Thus the Newton
step can be solved using a block tridiagonal algorithm.

4.2 Computations of the Open Loop Control Problem

We consider the control problem in a forward facing step channel flow. The goal is to
minimize the recirculation that occurs at the top of the step by tangential movement
of the boundary near the recirculation region, as seen in the schematic in Figure 6.

x=5

Figure 6: Schematic for Controlled Forward Facing Channel Flow

u(t)

The basis functions {u;, ¢ = 0,...,5} were chosen as solutions to the stationary Navier-
Stokes equations with boundary control velocity as shown in Table 3.

Basis Function

Up

uq

Uz

us

Uy

u;

Boundary Velocity

0

0.05

0.110.15

0.2

0.25

Table 3: Basis Functions Generated by Boundary Velocities

Define the reduced order solution as

() = g0+ D_ ai(t)gi + u(t)es

where the basis functions are defined as

Po
o1

b2
¢3

P4
b5

Ugp

u; — 5111 + 4110

3

Us — Uz + 540
2

Us — gu3 + 340
+ 1

us; — —uy + —u

57 qWa T 0

4(115 — 110)
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Using the parameters At = 0.05,3 = 51—0, and an initial condition zo = [0 0 0 0 0]7,
we obtained convergence of the two point boundary value problem in 9 iterations. The
optimal control u(t) is shown in Figure 7. The flow simulation with the optimal control

input is shown in Figure 8.

0.14

0121

0.08[

0.06[

0.04f

0.021

Figure 8: Navier-Stokes Equations with Control Input

5 Design of Feedback Synthesis

In this section we will discuss a method for the construction of a feedback synthesis
v(t) = K(z(t)) based on the reduced order control system

Ma(t) + Az(t) + 2()TNaz(t) + bv(t) = 0 (5.18)
a(t) = v(t) (5.19)
a(0) = ao, (5.20)
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and then applied to the unsteady Navier-Stokes equations.
Consider the optimal control problem (4.9)-(4.11)in R™. Then the optimal control
can alternatively be given by the feedback form

vo(t) = K(x(1),1) = W(x(1), Va(2(1), 1)),

where ¥(z(t), p(t)) = v(?) minimizes the Hamiltonian

p(t) - (f(z) + B(x)V) + h(v(1)).

Here, V' is the unique viscosity solution to the Hamilton-Jacobi-Bellman (HJB) equa-
tion

Vit f(z) Vo =5 (=BTV,) +1(z) =0
V(z,T)=0,

where B(z) = B and h* is the conjugate function of h. If we use h = %|v(1€)|27 then the
conjugate function is A* = —%|p(t)|2. Thus, the optimal feedback solution is given by

o(t) = —%BTVI(x(t),t) — K(2(1),1).

Assuming V(z(t),t) € C*((0,T);R™), we have the following relationship between the
HJB equation and the Pontryagin maximum principle

p(t) = Va(a(1),1),

where the pair (2(t),p(t)) satisfies the TPBV problem (4.12)-(4.13) with 2(0) = z¢
and p(7') = 0.

Note that the feedback gain K(z(t),t) = Kr(z(t),t) depends on the final time
T. Since the problem under consideration is autonomous, we can write Kr(z(t),t) =
Kr_4(2(1),0). Given T" > 0, define the function

zo — ®(z0) = p™(0),

where (z(t), p(t))" is the solution to the TPBV problem with z(0) = 2. Then we can
define the feedback law

Kr(20,0) = (20, p™(0)) = —%BT<I>($0)

at each point zg € R™. Since the optimal feedback law Kr_¢((¢),0) is impractical,
we replace the time dependent feedback law with the stationary feedback law

v(t) = K(2(t)) = Kr(x(1),0)

for " > 0 sufficiently large.

Based on these observations, we can construct a suboptimal feedback law by car-
rying out the following steps:

1. Choose a set of collocation points ¥ C R "™ and calculate the solution (z(t), p(t))"
to the TPBV problem at the points 29 € ¥. Thus we obtain the values of K at

the points z¢ € X.
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2. Use an interpolation method to construct the feedback synthesis K (z) satisfying

K(zo) = K(z¢) forzge€ X.

For Step 2, we used an interpolation method based on the Green’s function. Assume
we have the set of collocation points {(z0);}}4, € ¥. Define the feedback law

M
K(z)= EG(JE, (70)i) - mi

with
G((:CO)Z', (.ro)]‘) "= f(((mo)i), 1=1,..., M.

If the Green’s functions G satisfies the biharmonic equation
A%G(z) = §(2),

then G(z) = |z| for n = 3, and G(z) = 2z?(Inz — 1) for n = 2. In this case, K(z)
minimizes

/]R” |AK (z)|*dz  subject to  K((x0):) = K((0)i), (z0); € .
In our numerical calculations, we used a family of Green’s functions of the form

Gz,y) =z —y|* 1 <a <4

5.1 Computational Results of the Feedback Synthesis

The design of the feedback law K(z) requires that we compute the solution (z(%), p(t))
to the TPBV problem at a specified number of collocation points (z¢);. The extent of
these points can be determined from the solution to the TPBV problem with the desired
initial condition. In Figure 9 we show the reduced order solution (ay(%), ag(?), u(t))
computed from the TPBV problem using the Stokes tracking problem (4.8) with an
initial condition of [0 0 0]. We chose the collocation points uniformly distributed on
the intervals [—2,2] x [—15, 15] X [—=0.5,0.5] for a total of 195 = 5 X 13 X 3 points in
the aq, ag, u directions, respectively.

We used the Green’s function G(z,y) = |z — y|® with a value of @ = 3.7. In
Figure 10 we compare the interpolated values of K (z) against the exact feedback law
K(z). The parameter u is fixed at u = 0.5, and the values of K(z) are computed at
1281 uniformly distributed points in ([-2,2],[~15,15],0.5) € IR3. We see that this
method does provide an accurate interpolant. In our calculations, we observed that
lower values of a provided greater fluctuations in the interpolant.

In Figure 11 we compare the values of the open loop control and the closed loop
control for the reduced order control system (5.18)-(5.20). It validates the feasibility
of our approach.

We now describe how to apply the feedback control law on the full Navier-Stokes
equations. To calculate the feedback control, we project the full solution onto the
reduced basis space by

Pu(t) = ¢ + Z a;(t)d; + u(t)da,
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Figure 10: Interpolation of BT®(z) with u fixed at 0.5, a = 3.7

where (a1(1), az(?)) is determined by the projection equation

(u(1),6;) = (¢o + D_ (1) + u(t)63, 45), j = 1,2. (5.21)

Equation (5.21) is then written as
Ma = col[(u(t) = ¢o — u(t)pmt1,65)], J = 1,2. (5.22)
We can then construct the feedback law
v(t) = K(an(t), as(), u(l)),

where (a;(t),ay(t)) are computed from Equation (5.22). In Figure 12 we show the
values of the closed loop control from the full Navier-Stokes equations compared with
the values of the closed loop control computed from the reduced order model. The
open loop control is also included as a reference.
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open loop control
feedback control

Figure 11: Feedback Control versus Open Loop Control

open loop control
- - - reduced order feedback control
01f —— full feedback control

Figure 12: Feedback Control

5.2 Dynamic Compensator Design

The design of the feedback synthesis requires that we have a complete observation
of the state at each time step. In practice, this is not feasible. For the full Navier-
Stokes equations, rather than projecting the solution onto the reduced basis space
and computing the feedback, we would like to be able to compute the feedback input
v(t) using a partial observation of the state. In this section, we propose a method of
constructing a state estimator to complete the compensator dynamics.

The reduced order controlled Navier-Stokes equations can be written as

dz

—+ F(z,v)=10
o T E(z,0)

z(0) = zq,

where v = K(z) is the feedback control law and z = [a u]T are the parameters of the

state. Assume we have a partial observation of the full Navier-Stokes equations
y(t) = h(u(?)),
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where h is a vector-valued, bounded, linear functional. We model the state estimator
as

di
&y E(2,v) = Gy - Ha)
dt
iAC(O) = Zo,
where v = K(&) is the feedback control law, & is the state estimator, and H; =
h(¢;), j =1,...,mis the matrix representation of the observation functional » on VE,

We compute the observer gain GG using the extended Kalman filter. Let A = ;—IE(;%, )
be the linearized map at . Then the gain ¢ is given by

G=YHTR™

where the error covariance Y is the solution to the Ricatti equation

d
ZU= AT+ 34 - SHTRT'HY + Q,

and @), R are the covariance matrices of the system and observation noise, respectively.

6 Conclusions

We have presented a reduced order model based on the reduced basis method that can
be used for the simulation and control of viscous incompressible flow problems. This
reduced order model is inexpensive to solve and accurately captures the dynamics of the
original system using a small number of basis functions. The feasibility of the reduced
order model for flow control was demonstrated on a boundary velocity control problem.
A low order feedback control law was developed and successfully implemented on the
full Navier-Stokes equations. Through our numerical experiments, the feasibility of
this feedback law was demonstrated for the control of viscous flows. With the state
estimator, we have a complete compensator design for the full Navier-Stokes equations.
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